freedom in lighting Helvar

Управляемый DALI-2 LED драйвер постоянного тока

- Управление по протоколу DALI-2
- Диапазон диммирования 1 100%
- Технология фильтрованного гибридного диммирования высокое качество света без пульсаций на всём интервале уровней яркости
- І класс защиты от поражения электрическим током
- Предназначен для закрытых светильников, где защита обеспечивается конструкцией светильника (I или II класса защиты)
- Подходит для использования в аварийном освещении
- Совместим с Helvar Driver Configurator

Основные функции

- Настраиваемый выходной ток: 120 мА (по умолчанию) 350 мА
- Настройка значения выходного тока с помощью токозадающего резистора или программного обеспечения Helvar Driver Configurator
- Регулировка яркости с использованием технологии фильтрованного гибридного диммирования для достижения высокого качества света
- Функция Switch-Control для возможности простой регулировки уровня яркости
- Адаптивная защита от перегрузки, снижение выходного тока при небольшой перегрузке (до 45 Вт)
- Защита от холостого хода и короткого замыкания в нагрузке
- Универсальный терминал Iset / NTC, для подключения токозадающего резистора или датчика температуры
- Функция поддержания постоянного светового потока светильника на протяжении срока службы до 100 000 часов (CLO)
- Функции мониторинга и сохранения информации об энергопотреблении и количестве часов наработки в памяти драйвера

Входные параметры

Переменное напряжение 198 - 264 B

макс. 330 В в течение 1 часа

Постоянное напряжение 176 - 280 B напряжение запуска > 190 B Ток питания при полной нагрузке 0.2 - 0.22 A

Частота 0 / 50-60 Гц Потребление в режиме Stand-by < 0.5 BT THD при полной нагрузке < 12% Ток утечки на землю < 0.5 MA

Устойчивость к микросекундным помехам 1 кВ - L-N, 2 кВ - L-GND (IEC 61000-4-5)

Устойчивость к наносекундным помехам 4 κB (IEC 61000-4-4)

Изоляция

Цепь входа – цепь выхода Не изолированно Цепь управления – цепь выхода Основная изоляция Цепь входа – Цепь управления Основная изоляция Цепь входа / выхода / управления – корпус Основная изоляция

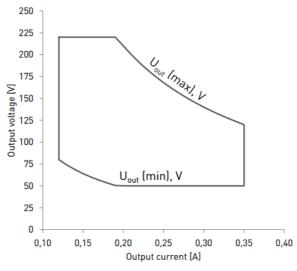
Выходные параметры

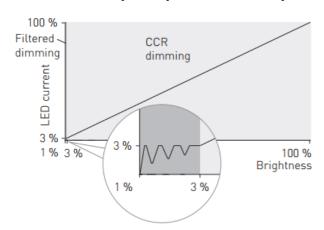
Выходной ток 120 мА (по умолчанию) - 350 мА

Отклонение значения выходного тока ± 5% < 2% Пульсации U-OUTmax (без нагрузки) 250 B

Бросок тока (при включении драйвера в режиме КЗ или при подключении

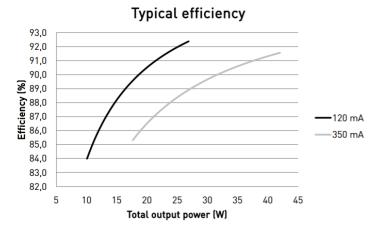
нагрузки к работающему драйверу) 600 мА

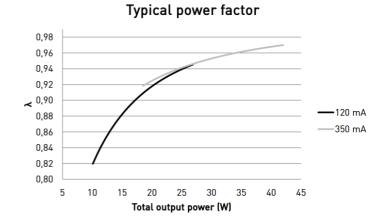

I-OUT	120 мА	350 мА
P-out (макс)	26.4 Вт	42 BT
U-OUT	80 – 220 B	50 – 120 B
λ	0.95	0.97
η @ макс	92 %	91 %



Рабочий диапазон

Примечание: Регулировка яркости в диапазоне 1 – 100% возможно на всём рабочем диапазоне.


Технология фильтрованного гибридного диммирования



Диапазон диммирования	Частота модуляции	Индекс модуляции
100 - 3 %	0 Гц	< 1 %
3 - 1 %	> 2 кГц	< 20 %

Соответствует рекомендациям стандарта IEEE 1789-2015 в отношении модуляции тока для снижения возможных рисков для здоровья пользователей.

Эффективность и коэффициент мощности

Эксплуатационные параметры

Максимальная температура в точке Тс Окружающая температура Окружающая температура при монтаже вне светильника Температура хранения Влажность Срок службы (10% отказов)

85°C -25...+50°C -25...+40°C -40...+80°C Без конденсации 100 000 ч., при Тс = +65°С 60 000 ч., при Tc = +75°C 30 000 ч., при Tc = +85°C

freedom in lighting Helvar

Подключение и механические данные

Сечение кабеля Тип кабеля Изоляция кабеля

Максимальная длина кабеля до нагрузки

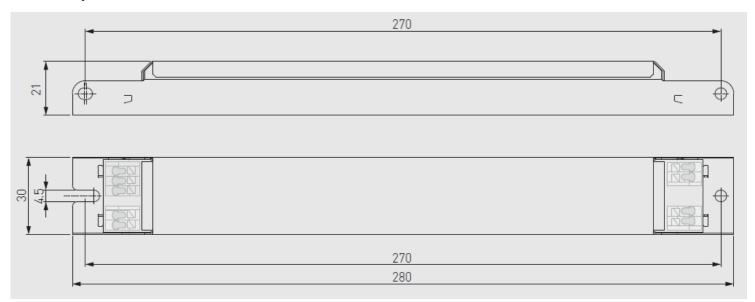
Macca

Класс защиты ІР

0.5 – 1.5 кв.мм Гибкий или жесткий Согласно EN 60598

5 м 190 г IP20

Схема подключения

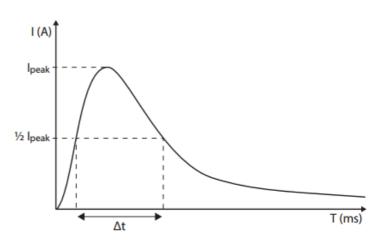


Токозадающие резисторы (погрешность I-OUT: ± 5%)

Значения токозадающих резисторов драйвера соответствуют стандарту LEDset. Сопротивление резистора для каждого значения выходного тока можно рассчитать по следующей формуле: $R(\Omega) = (5 \text{ V}) / I_{\text{out}} *1000$. В таблице ниже приведены значения сопротивления токозадающих резисторов для наиболее часто используемых выходных токов (погрешность I-OUT: ± 5%).

LED-Iset resistor model	MAX	300 mA	250 mA	200 mA	150 mA	No resistor
I _{out} (mA)	350	300	250	200	150	120
Order code	T90000	T90300	T90250	T90200	T90150	N/A

Размеры

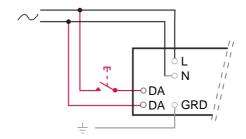


Количество драйверов на автоматические выключатели

Кол-во драйверов на автоматический выключатель типа С 16A, (шт.)	Пиковый ток	1/2 длительности	Расчетная энергия
	Ipeak, (A)	Δt, (мкс)	Іреак ²Δt, (А²с)
53	25	177	0.08

Тип автоматического выключателя	Относительное количество драйверов
B 10A	37%
B 16A	60%
B 20A	75%
C 10A	62%
C 16A	100% - см. предыдущую таблицу
C 20A	125%

Рекомендуется использовать автоматические выключатели типа С.



Функция Switch-Control

Функция Switch-Control позволяет регулировать световой поток осветительного прибора с помощью стандартного выключателя звонкового типа без использования дополнительных контроллеров и регуляторов яркости. Управление освещением осуществляется за счет подачи напряжения питания на входы DALI.

Подключение.

Пожалуйста, убедитесь, что все подключенные компоненты рассчитаны на работу с сетевым напряжением и соответствуют требованиям стандартов безопасности. Функционал DALI становится недоступным при использовании Switch-Control и активируется снова после перезагрузки драйвера по питанию. Не допускается одновременное использование функции Switch-Control и управления по протоколу DALI.

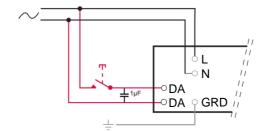


Схема подключения выключателя драйвера в режиме Switch-Control.

Схема подключения конденсатора.

На один выключатель можно подключить до 20 драйверов. Убедитесь, что все драйверы подключены к одной фазе.

Максимальная длина кабеля от выключателя до драйвера составляет 25 м. Эту длину можно увеличить до 200 м, подключив конденсатор ёмкостью 1 мкФ, 275 В (X2 тип). Конденсатор устанавливается между входами DALI (см. схему подключения) одного из светильников, подключенных к одному выключателю. Рекомендуется устанавливать конденсатор в светильник, расположенный в центре линии Switch-Control. Также применение конденсатора может быть необходимо для защиты линии Switch-Control от помех, вызванных особенностями конструкции осветительных приборов, их монтажа и типа объекта.

Из-за наличия индуктивности в проводах осветительных приборов, со временем может наблюдаться нарушение синхронности работы светильников. В этом случае нажмите и удерживайте клавишу Switch-Control, пока все светильники не включатся. Затем выключите свет коротким нажатием. Это приведет к синхронизации всех светильников. Также синхронизация управления произойдет при отключении / включении электропитания светильников (если не активирован режим работы включения на последний уровень яркости).

Управление.

- Короткое нажатие (<50 мкс) Ничего не происходит. Это защита от помех в сети питания.
- Короткое нажатие (100 350 мс) Включение / выключение освещения. При коротком нажатии поочередно происходит включение и выключение освещения. При включении свет включается на последний уровень яркости, который был до выключения.
- Длительное нажатие (> 450 мс) Регулировка яркости. После включения первое длительное нажатие уменьшает яркость. Последующие длительные нажатия увеличивают / уменьшают яркость освещения поочередно. Если нажать и удерживать клавишу при выключенном освещении, свет включится на минимальный уровень яркости и начнет диммироваться вверх.

Увеличение / уменьшение яркости происходит с фиксированной скоростью -5 сек от минимального до максимального уровня .

Режимы работы.

Функция Switch-Control может работать в двух режимах:

- При отключении и включении электропитания свет включается на 100% (режим по умолчанию).
 - Для активации режима необходимо при выключенном свете сделать следующую комбинацию нажатий:
 - 1 х долгое нажатие (20 25 сек.)
 - 3 х короткое нажатие (90 360 мсек.)
 - 1 х долгое нажатие (20 25 сек.)

Между нажатиями допускается пауза не более 2 сек

После завершения комбинации свет должен моргнуть два раза.

 При отключении и включении электропитания свет включается на уровень яркости, предшествующий отключению питания.

Для активации режима необходимо при включенном свете сделать следующую комбинацию нажатий:

- 1 х долгое нажатие (20 25 сек.)
- 3 х короткое нажатие (90 360 мсек.)
- 1 х долгое нажатие (20 25 сек.)

Между нажатиями допускается пауза не более 2 сек

После завершения комбинации свет должен моргнуть четыре раза.

Драйвер предназначен для установки в светильник. При использовании фиксаторов кабеля допускается монтаж драйвера вне светильника. Для безопасной, правильной и надежной работы драйвера производитель светильников должен следовать и выполнять соответствующие требования и инструкции безопасности (в том числе IEC/EN 60598-1). Конструкция светильника должна обеспечивать защиту драйвера от пыли, влаги и перегрева. Ответственность за правильный подбор блока питания и нагрузки, за установку драйвера в соответствии со спецификациями и техническими требованиями лежит на производителе светильников. Категорически нельзя выходить за рамки эксплуатационных режимов, обозначенных в документации на драйвер.

Установка и эксплуатация

Температура эксплуатации

- Надежная работа и заявленный срок службы обеспечиваются только в том случае, если в процессе эксплуатации температура драйвера в точке Тс не превышает максимального допустимого значения.
- Убедитесь в том, что температура драйвера в точке Тс не превышает максимально допустимую, указанную в паспорте

Токозадающий резистор

Выходной ток драйвера может быть установлен с помощью токозадающего резистора или программного обеспечения.

- Токозадающий резистор подключается к клеммам Iset.
- Когда резистор не подключен, выходной ток принимает минимальное возможное значение.
- Допускается использование стандартных резисторов. Для максимально точной настройки выходного тока рекомендуется использовать качественные резисторы с точными значениями сопротивления. Минимальный диаметр ножек резистора 0.51 мм
- Для правильного подбора токозадающего резистора см. таблицы соответствия.

Helvar Driver Configurator

Драйвер совместим с программным обеспечением Helvar Driver Configurator.

С помощью Helvar Driver Configurator может быть настроено значение выходного тока, изменен функционал клемм Iset для возможности использования датчика температуры NTC. Также конфигуратор позволяет настроить параметры функции CLO.

NTC функция

При активированной функции NTC, драйвер фиксирует показания NTC датчика температуры. Пороговое значение сопротивления для NTC датчика составляет 8,2 кОм. После превышения порогового сопротивления драйвер начинает снижать выходной ток.

Функции драйвера при ошибке в нагрузке

Режим холостого хода

При отсутствии нагрузки драйвер переходит в режим standby. Через 10 минут драйвер автоматически выходит из режима stand-by. Если нагрузка всё ещё отсутствует, драйвер опять возвращается в режим stand-by. Дальше, для восстановления работоспособности драйвера его необходимо перезагрузить по питанию.

Режим короткого замыкания

При коротком замыкании в нагрузке драйвер уходит в режим stand-by. Для восстановления работоспособности драйвера его необходимо перезагрузить по питанию или послать ему команду DALI.

Перегрузка

При возникновении сильной перегрузки драйвер уходит в режим stand-by. Для восстановления работоспособности драйвера его необходимо перезагрузить по питанию.

При небольшой перегрузке (до 45 Вт) драйвер снизит выходной ток для снижения мощности нагрузки до максимального допустимого согласно спецификации драйвера.

Недостаточная нагрузка

При недостаточной нагрузке драйвер уходит в режим standby. Для восстановления работоспособности драйвера его необходимо перезагрузить по питанию.

Соответствие стандартам

Основные требования безопасности	EN61347-1: 2008+ A1:2011+A2:2013
Требования безопасности для LED драйверов	EN 61347-2-13: 2014
Дополнительные требования безопасности для блоков питания, используемых в аварийном освещении	EN 61347-2-13: 2014, Annex J
Класс термозащиты	EN 61347, C5e
Гармоники сетевого тока	EN 61000-3-2: 2014
Ограничения пульсаций напряжения	EN 61000-3-3: 2013
Радиопомехи	EN 55015: 2013
Электромагнитная устойчивость	EN 61547: 2009
Эксплуатационные требования	EN 62384: 2006+ A1:2009
Цифровой протокол DALI: Общие требования к DALI системам Требования к блокам питания DALI Требования к DALI блокам питания для LED модулей (устройства типа 6)	EN 62386-101 (DALI-2) EN 62386-102 (DALI-2) EN 62386-207 (DALI-2)
Соответствует европейским стандартам	
Соответствует директивам RoHS / REACH	
Маркировки EAC, CE, ENEC	