LC1x25-DA

25 W Dimmable DALI-2 LED driver

Helvar

Product code: 5766 (DALI-2) 5566 (DALI)

25 W 220 - 240 V 0/ 50 - 60 Hz

- SELV output protection for safety and flexibility in luminaires
- DALI-2 certified LED driver, 1-100 % dimming range
- Suitable for use in emergency lighting applications
- Low current ripple
- Long lifetime up to 100 000 h
- Driver protection Class II
- Suitable for Class I and Class II luminaires
- For driving Class III (SELV) luminaires, optional strain reliefs available for independent use outside of luminaire (LC-SRA/LC1x30-SR or LC-SRA-LOOP for looping the input cables)

Functional Description

- Adjustable constant current output: 350 mA (default) to 700 mA
- Current setting programmable by Helvar driver configurator or by external resistors
- Hybrid dimming technique for high quality light
- Latest technology Switch-Control 2* functionality for easy-to-use intensity control
- Adaptive LED overload protection. Reduces output current if overload is detected
- Full load recognition, open and short circuit protection
- Multipurpose terminal Iset/NTC for current setting or over temperature protection
- Constant Light Output (CLO) (default disabled)
- Power consumption monitor (real time), Running hour monitor (accumulative), Energy management (accumulative) *Available in the DALI-2 product (5766).

Mains Characteristics

Voltage range	198 VAC – 264 VAC
	Withstands max. 320 VAC (max. 1 hour)
DC range	176 VDC - 280 VDC
starting voltage	> 190 VDC
Mains current at full load	0.13 A – 0.14 A
Frequency	0 / 50 Hz – 60 Hz
Stand-by power consumption	< 0.45 W
THD at full power	< 17 %
Tested surge protection	1 kV L-N, 2 kV L-GND (IEC 61000-4-5)
Tested fast transient protection	4 kV (IEC 61000-4-4)

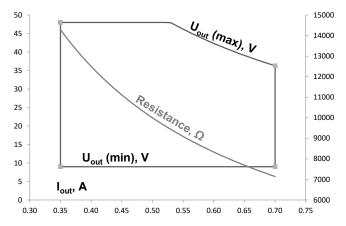
Insulation between circuits & driver case

Mains circuit - SELV circuit	Double/reinforced insulation
DALI circuit - SELV circuit	Double/reinforced insulation
Mains circuit - DALI circuit	Basic insulation
Mains and output - Driver case	Double/reinforced insulation

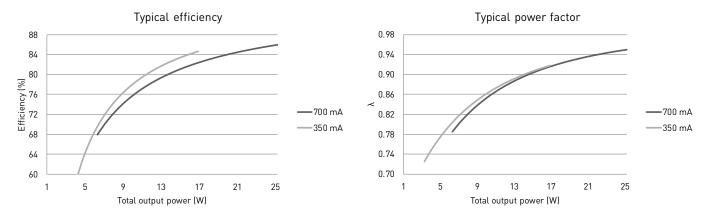
Load Output (SELV <60 V)

Efficiency (n) at full load

Output current (I _{out}) Accuracy Ripple		350 mA (default) – 700 m/ ± 5 % < 2 %* at ≤ 120 Hz	4
U _{out} (max) (abnormal) EOF ₁ (EL use)		*) Low frequency, LED load: Cree XM 60 V > 0.98 x output current wi	
l _{out}	350 mA	700 mA	
P _{out} (max)	16.8 W	25.2 W	
U _{out}	9 V – 48 V	9 V – 36 V	
PF (λ) at full load	0.91	0.95	


85 %

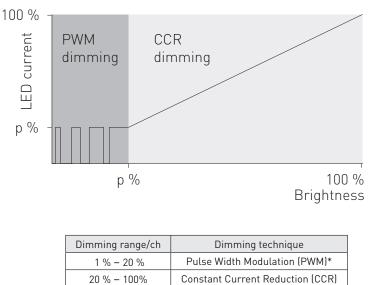
86 %



Operating window

Note: Dimming between 1 % - 100 % possible across the whole operating window

Driver performance


Operating Conditions and Characteristics

75 °C
−20 °C +50 °C
−20 °C +40 °C
−40 °C +80 °C
No condensation
100 000 h, at t _c = 65 °C
90 000 h, at t = 70 °C
60 000 h, at t c = 75 °C

*) For other than independent use, higher t_a of the controlgear possible as long as highest allowed t_a point temperature is not exceeded

Hybrid dimming technique per channel

^{*} PWM dimming frequency 800 Hz

Helvar hybrid dimming products combines both Constant Current Reduction (CCR) amplitude dimming and Pulse Width Modulation (PWM) dimming. CCR is a very efficient technique for dimming the light output, especially on higher range. On lower range, the hybrid dimming products implement high-frequency PWM dimming according to the table above.

Quantity of drivers per miniature circuit breaker 16 A Type C

Based on inrush current $I_{_{peak}}$	Typ. peak inrush current I _{peak}	1/2 value time, Δt	Calculated energy, $I_{peak}^{2}\Delta t$	
86 pcs.	24 A	115 µs	0.048 A ² s	

CONVERSION TABLE FOR OTHER TYPES OF

MINIATUR	E CIRCUIT BREAKER		
MCB type	Relative quantity of LED drivers	I _{peak}	
B 10 A	37 %		\backslash
B 16 A	60 %		\backslash
B 20 A	75 %	½ lpeak	
C 10 A	62 %		
C 16 A	100 % (see table above)		
C 20 A	125 %		
		 Δt 	→

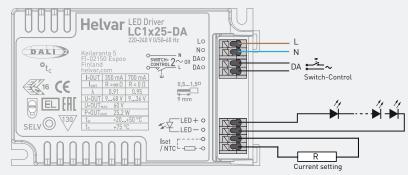
I (A)

CONTINOUS CURRENT

Total continous current of the drivers and installation environment must always be considered and taken into calculations when installing drivers behind miniature circuit breaker. Example calculation of total drivers amount limited by continous current: n(I cont) = (16 A (I nom. Ta) / "nominal mains current with full load") x 0.76). This calculation is an example according to recommended precautions due to multiple adjacent circuit breakers (> 9 MCBs) and installation environment (T_a 30 degrees); variables may vary according to the use case. Both inrush current and continous current calculations are based on ABB \$200 series circuit breakers. More specific information in ABB series S200 circuit breaker documentation.

NOTE! Type C MCB's are strongly recommended to use with LED lighting. Please see more details in "MCB information" document in each driver product page in "downloads & links" section.

freedom in lighting Helvar

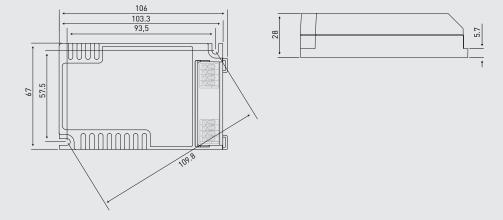


Connections and Mechanical Data

Wire size
Wire type
Wire insulation
Maximum driver to LED wire length
Weight
IP rating

0.5 mm² - 1.5 mm² Solid core and fine-stranded According to EN 60598 5 m 135 g IP20

Connections


Note:

• Not suitable for load side switching operation

• Label may differ if the unit is preset to fixed current

• LC1x25-DA has Iset terminal, however it is compatible with LED-Iset resistor values according to the table below.

Dimensions (mm)

The current setting values are adjusted according to the LEDset specification. The resistor value for each required output current can thus be calculated from the formula R [Ω] = (5 [V] / I_out [A]) * 1000. Below are the available LED-Iset resistors from Helvar, preadjusted for the most common output currents.

Helvar LED-Iset resistors and currents (Nominal I_{out} (±5 % tol.))

LED-Iset resistor	МАХ	650 mA	600 mA	550 mA	500 mA	475 mA	450 mA	425 mA	400 mA	375 mA	No resistor
model	МАЛ	000 MA	000 MA	550 MA	500 MA	475111A	400 MA	420 MA	400 MA	070 MA	14010313(01
I _{out} (mA)	700	650	600	550	500	475	450	425	400	375	350
Order code	T90000	T90650	T90600	T90550	T90500	T90475	T90450	T90425	T90400	T90375	N/A
Resistance values (Ω)	0	7.68k	8.25k	9.09k	10k	10.5k	11k	11.8k	12.4k	13.3k	∞

The current can be adjusted also with normal resistors by selecting suitable resistor value (formula R [Ω] = (5 [V] / I_out [A]) * 1000). Reference resistor values can be found below order code in the table above.

Information and conformity

freedom in lighting Helvar

LC1x25-DA LED driver is suited for built-in usage in luminaires. In order to have safe and reliable LED driver operation, the LED luminaires will need to comply with the relevant standards and regulations (e.g. IEC/EN 60598-1). The LED luminaire shall be designed to adequately protect the LED driver from dust, moisture and pollution. The luminaire manufacturer is responsible for the correct choice and installation of the LED drivers according to the application and product datasheets. Operating conditions of the LED driver may never exceed the specifications as per the product datasheet.

Installation & operation

Maximum t_c temperature:

- Reliable operation and lifetime is only guaranteed if the maximum t_c point temperature is not exceeded under the conditions of use
- Ensure that the tc point temperature does not rise higher than specified on the product datasheets

Installation site:

• The general preferred installation position of LED drivers for independent use is to have the top cover facing upwards

Current setting resistor

LC1x25-DA LED driver features an adjustable constant current output.

- An external resistor can be inserted in to the current setting terminal, allowing the user to adjust the LED driver output current
- When no external resistor is connected, then the LED drivers will operate at their default lowest current level
- A standard through-hole resistor can be used for the current setting. To achieve the most accurate output current it is recommended to select a quality low tolerance resistor. Minimum diameter for resistor leg is 0.51mm
- Always connect the current setting resistor only into the terminals marked with lset on the LED driver label.
- Resistor/current values follow LEDset specification for current setting and are presented on page 3

Lamp failure functionality

No load

When open load is detected, driver will go to standby. Automatic recovery is on during the first 10 minutes. If open load is still detected after the first 10 minutes, driver goes to standby mode and recovers through mains reset.

Short circuit

When short circuit is detected, driver goes to standby mode and returns through mains reset.

Overload

When high over load is detected, driver goes to standby mode and follows the same logic as described in the short circuit condition. When low over load is detected, output current will be reduced to have maximum rated output power.

Underload

When under voltage is detected, driver goes to standby mode and returns through mains reset.

Conformity & standards

General and safety requirements	EN 61347-1: 2008+
	A1:2011+A2:2013
Particular safety requirements for DC or AC supplied electronic control gear for LED modules	EN 61347-2-13: 2014
Additional safety requirements for DC or AC supplied electronic control gear for LED modules	EN 61347-2-13: 2014, Annex J
Thermal protection class	EN 61347, C5e
Mains current harmonics	EN 61000-3-2: 2014
Limits for voltage fluctuations and flicker	EN 61000-3-3: 2013
Radio frequency interference	EN 55015: 2013
Immunity standard	EN 61547: 2009
Performance requirements	EN 62384: 2006+ A1:2009
Digital addressing lighting interface:	
General requirements for DALI system	EN 62386-101 (DALI-2)
Requirements for DALI control gear	EN 62386-102 (DALI-2)
Requirements for control gear of LED modules (DALI Device Type 6)	EN 62386-207 (DALI-2)
Independent usage acc. to relevant clauses of	EN 60598-1 : 2015
Compliant with relevant EU directives	
RoHS / REACH compliant	
ENEC and CE marked	

Label symbols

AC/DC supplied electronic control gear for emergency lighting purposes intended for connection to a centralized emergency power supply.

Safety isolating control gear with short circuit protection (SELV control gear).

SELV

Double insulated control gear suitable for built-in use.

Thermally controlled control gear, incorporating means of protection against overheating to prevent the case temperature under any conditions of use from exceeding 130 °C.